Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12844-12851, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38623732

RESUMEN

The distinctive characteristics of near-infrared fluorescent organic molecules render them indispensable across diverse applications, from energy harvesting to bioimaging and sensing technologies. In this work, we continue our investigation on the chalcone derivative, 4-dimethylamino-2'-hydroxychalcone (nDHC, n = 1; where n is the number of olefinic bonds), by expanding the number of central double bonds (n = 2 (2DHC) and n = 3 (3DHC)). Additionally, we also synthesized the structurally related chalcones lacking the OH group (DC, 2DC, 3DC) in order to obtain a comprehensive understanding of their effects on the intramolecular charge transfer (ICT). The results show remarkable bathochromic shifts in absorption and fluorescence peaks in solution as n increases. These shifts, 20 nm and 35 nm for absorption and 100 nm and 200 nm for fluorescence in 2DHC and 3DHC, respectively, signify enhanced ICT and a significant increase in the excited state's dipole moment. The presence of OH groups notably amplifies these shifts due to additional electron donation, influencing solute-solvent interactions in solution. Femtosecond fluorescence upconversion and transient absoprtion techniques unraveled distinct dynamics in these derivatives, exhibiting the dominance of vibrational cooling, solvation, and intramolecular motions, particularly in the larger conjugated systems 3DHC and 3DC. The observed changes in the femtosecond transinet absorption spectra suggest the existence of new active states in extended conjugation systems, indicating diverse intramolecular conformational states contributing to their relaxation dynamics. The results of this study provide invaluable insights into excited-state spectroscopy, offering a roadmap for tailoring chalcone derivatives for specific applications.

2.
Phys Chem Chem Phys ; 25(28): 19230-19238, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37431763

RESUMEN

This work reports a significant improvement in both the open-circuit voltage (VOC) and current density (J) of dye-sensitized solar cells (DSSCs) using gold nanorod-modified TiO2 nanoparticles (TiO2/AuNRs) together with a cobalt-imidazolate framework (ZIF-67) as an efficient photoanode. It was demonstrated that adding ZIF-67 (8 wt%) to TiO2 NPs increased the VOC by 160 mV and J by 2.5 times. This observation was described based on the significant increase in the amount of adsorbed dye in the presence of highly porous ZIF-67, which boosts the photoanode's light harvesting. Modifying TiO2 NPs with AuNRs also caused a remarkable enhancement in J (∼ 2.8 times), which can be explained via electron transfer between the TiO2 conduction band and AuNRs. It can result in a more efficient inhibiting effect on the interfacial charge recombination processes in TiO2/AuNRs/ZIF-67 because of the formation of a Schottky barrier at the interface between TiO2 and Au. These effects were confirmed by the reduction in the photoluminescence intensity of TiO2 in the presence of AuNRs. More reduction in the photoluminescence intensity was observed when ZIF-67 was added. The prepared photoanode showed an outstanding improvement in the overall efficiency of the DSSC (η) to 8.38% compared to the bare TiO2-based photoanode (1.83%). The notable improvement in the TiO2/AuNRs/ZIF-67 performance confirmed its practicality for high-efficiency DSSCs.

3.
Phys Chem Chem Phys ; 25(20): 14126-14137, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161937

RESUMEN

We investigate the role of quantum confinement and photoluminescence (PL) lifetime of photoexcited charge carriers in semiconductor core/shell quantum dots (QDs) via PL quenching due to surface modification. Surface modification is controlled by varying the number of dye molecules adsorbed onto the QD shell surface forming QD-dye nanoassemblies. We selected CuInS2/ZnS (CIS) and InP/ZnS (InP) core/shell QDs exhibiting relatively weak (664 meV) and strong (1194 meV) confinement potentials for the conduction band electron. Moreover, the difference in the emission mechanism gives rise to a long and short excited state lifetime of CIS (ca. 290 ns) and InP (ca. 37 ns) QDs. Dye molecules of different ionic characters (rhodamine 575: zwitterionic and rhodamine 560: cationic) are used as quenchers. A detailed analysis of Stern-Volmer data shows that (i) quenching is generally more pronounced in CIS-dye assemblies as compared to InP-dye assemblies, (ii) dynamic quenching is dominating in all QD-dye assemblies with only a minor contribution from static quenching and (iii) the cationic dye shows a stronger interaction with the QD shell surface than the zwitterionic dye. Observations (i) and (ii) can be explained by the differences in the amplitude of the electronic component of the exciton wavefunction near the dye binding sites in both QDs, which results in the breaking up of the electron-hole pair and favors charge trapping. Observation (iii) can be attributed to the variations in electrostatic interactions between the negatively charged QD shell surface and the cationic and zwitterionic dyes, with the former exhibiting a stronger interaction. Moreover, the long lifetime of CIS QDs facilitates us to easily probe different time scales of the trapping processes and thus differentiate the origins of static and dynamic quenching components that appear in the Stern-Volmer analysis.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120442, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34601368

RESUMEN

Carbon nanoparticles (CNPs) are getting wide attention due to their fluorescence and low level of toxicity compared to other semiconducting photoluminescent materials. CNPs show strong 'solvatochromism', and the emission mechanism is still under discussion. Florescent carbon in the form of films would tremendously increase its potential for applications. In this work, we report for the first time the fluorescent emission characteristics of carbon films formed by aggregation of CNPs. Films of carbon were grown on glass substrates by using a novelCold Vapour Deposition System. We have performed a detailed comparative study of the emission spectra of film and CNPs (prepared using the microwave synthesis method) in various solvents. A qualitative model based on solvatochromism of CNPs is used to understand the emission pathways in the film.


Asunto(s)
Carbono , Nanopartículas , Fluorescencia , Microondas , Solventes
5.
Dalton Trans ; 50(7): 2555-2569, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33522534

RESUMEN

A series of mono-, di-, and poly(platina-ynes) incorporating stilbene spacer units with the formulae trans-[R-C[triple bond, length as m-dash]C-Pt(PBu3)2-C[triple bond, length as m-dash]C-R] (R = (E)-1,2-diphenylethene), trans-[(Ph)-(Et3P)2PtC[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]CPt(PEt3)2(Ph)] (R = (E)-1,2-diphenylethene), and trans-[-(PnBu3)2PtC[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-]n (R = (E)-1,2-diphenylethene), respectively, have been synthesized and characterized to explore the effects of ligand topology on the photoisomerization and photophysical properties of these materials. The structural and photophysical properties of the complexes have been investigated and compared with those of the previously reported mono-, di- and poly(platina-ynes) incorporating azobenzene spacers. We found that the organometallic species 1M, 2M and 1P undergo topology-dependent reversible trans-to-cis photoisomerization in CH2Cl2 solution. Computational modelling supported the experimental findings.

6.
Inorg Chem ; 60(2): 745-759, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33382607

RESUMEN

Pt(II) diynes and polyynes incorporating 5,5'- and 6,6'-disubstituted 2,2'-bipyridines were prepared following conventional Sonogashira and Hagihara dehydrohalogenation reaction protocols. Using Pt(II) dimers and polymers as a rigid-rod backbone, four new heterobimetallic compounds incorporating Re(CO)3Cl as a pendant functionality in the 2,2'-bipyridine core were obtained. The new heterobimetallic Pt-Re compounds were characterized by analytical and spectroscopic techniques. The solid-state structures of a Re(I)-coordinated diterminal alkynyl ligand and a representative model compound were determined by single-crystal X-ray diffraction. Detailed photophysical characterization of the heterobimetallic Pt(II) diynes and polyynes was carried out. We find that the incorporation of the Re(CO)3Cl pendant functionality in the 2,2'-bipyridine-containing main-chain Pt(II) diynes and polyynes has a synergistic effect on the optical properties, red shifting the absorption profile and introducing strong long-wavelength absorptions. The Re(I) moiety also introduces strong emission into the monomeric Pt(II) diyne compounds, whereas this is suppressed in the polyynes. The extent of the synergy depends on the topology of the ligands. Computational modeling was performed to compare the energetic stabilities of the positional isomers and to understand the microscopic nature of the major optical transitions. We find that 5,5'-disubstituted 2,2'-bipyridine systems are better candidates in terms of yield, photophysical properties, and stability than their 6,6'-substituted counterparts. Overall, this work provides an additional synthetic route to control the photophysical properties of metallaynes for a variety of optoelectronic applications.

7.
J Biomol Struct Dyn ; 38(9): 2746-2762, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31299885

RESUMEN

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.Communicated by Ramasamy H. Sarma.


Asunto(s)
Nanopartículas , Nanoestructuras , Enzimas Inmovilizadas
8.
Int J Nanomedicine ; 14: 8433-8444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749617

RESUMEN

AIMS: Different kinds of vitamins can be used as promising candidates to mitigate the structural changes of proteins and associated cytotoxicity stimulated by NPs. Therefore, the structural changes of α-syn molecules and their associated cytotoxicity in the presence of SWCNTs either alone or co-incubated with vitamin K1 were studied by spectroscopic, bioinformatical, and cellular assays. METHODS: Intrinsic and ThT fluorescence, CD, and Congo red absorption spectroscopic approaches as well as TEM investigation, molecular docking, and molecular dynamics were used to explore the protective effect of vitamin K1 on the structural changes of α-syn induced by SWCNTs. The cytotoxicity of α-syn/SWCNTs co-incubated with vitamin K1 against SH-SY5Y cells was also carried out by MTT, LDH, and caspase-3 assays. RESULTS: Fluorescence spectroscopy showed that vitamin K1 has a significant effect in reducing SWCNT-induced fluorescence quenching and aggregation of α- syn. CD, Congo red adsorption, and TEM investigations determined that co-incubation of α- syn with vitamin K1 inhibited the propensity of α-syn into the structural changes and amorphous aggregation in the presence of SWCNT. Docking studies determined the occupation of preferred docked site of SWCNT by vitamin K1 on α- syn conformation. A molecular dynamics study also showed that vitamin K1 reduced the structural changes of α- syn induced by SWCNT. Cellular data exhibited that the cytotoxicity of α- syn co-incubated with vitamin K1 in the presence of SWCNTs is less than the outcomes obtained in the absence of the vitamin K1. CONCLUSION: It may be concluded that vitamin K1 decreases the propensity of α- syn aggregation in the presence of SWCNTs and induction of cytotoxicity.


Asunto(s)
Nanotubos de Carbono/química , Vitamina K 1/farmacología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Adsorción , Benzotiazoles/metabolismo , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Rojo Congo , Humanos , L-Lactato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nanotubos de Carbono/ultraestructura , Espectrometría de Fluorescencia
9.
Int J Nanomedicine ; 14: 4637-4648, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417259

RESUMEN

AIM: It has been indicated that NPs may change the amyloidogenic steps of proteins and relevant cytotoxicity. Therefore, this report assigned to explore the impact of ZVFe NPs on the amyloidogenicity and cytotoxicity of α-synuclein as one of the many known amyloid proteins. METHODS: The characterization of α-synuclein at amyloidogenic condition either alone or with ZVFe NPs was carried out by fluorescence, CD, UV-visible spectroscopic methods, TEM study, docking, and molecular modeling. The cytotoxicity assay of α-synuclein amyloid in the absence and presence of ZVFe NPs was also done by MTT, LDH, and flow cytometry analysis. RESULTS: ThT fluorescence spectroscopy revealed that ZVFe NPs shorten the lag phase and accelerate the fibrillation rate of α-synuclein. Nile red and intrinsic fluorescence spectroscopy, CD, Congo red adsorption, and TEM studies indicated that ZVFe NP increased the propensity of α-synuclein into the amyloid fibrillation. Molecular docking study revealed that hydrophilic residues, such as Ser-9 and Lys-12 provide proper sites for hydrogen bonding and electrostatic interactions with adsorbed water molecules on ZVFe NPs, respectively. Molecular dynamics study determined that the interacted protein shifted from a natively discorded conformation toward a more packed structure. Cellular assay displayed that the cytotoxicity of α-synuclein amyloid against SH-SY5Y cells in the presence of ZVFe NPs is greater than the results obtained without ZVFe NPs. CONCLUSION: In conclusion, the existence of ZVFe NPs promotes α-synuclein fibrillation at amyloidogenic conditions by forming a potential template for nucleation, the growth of α-synuclein fibrillation and induced cytotoxicity.


Asunto(s)
Amiloide/metabolismo , Hierro/química , Nanopartículas del Metal/química , alfa-Sinucleína/metabolismo , Amiloide/química , Benzotiazoles/química , Muerte Celular , Línea Celular Tumoral , Rojo Congo/química , Humanos , Cinética , L-Lactato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oxazinas/química , Agregado de Proteínas , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Tirosina/química , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura
10.
Int J Nanomedicine ; 14: 5355-5368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31409992

RESUMEN

AIM: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. METHODS: In the present study, the interaction of SiO2 NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. RESULTS: Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs. Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). CONCLUSION: The current results suggest that low concentrations of SiO2 NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.


Asunto(s)
Fenómenos Biofísicos , Células Madre Mesenquimatosas/citología , Modelos Teóricos , Nanopartículas/química , Dióxido de Silicio/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Catalasa/metabolismo , Forma de la Célula/efectos de los fármacos , Dicroismo Circular , Endocitosis/efectos de los fármacos , Humanos , Cinética , L-Lactato Deshidrogenasa/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia , Termodinámica
11.
Langmuir ; 35(29): 9584-9592, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31287700

RESUMEN

New designer biofluorophores are being increasingly used in the investigation of complex cellular processes. In this study, we utilized new derivatives of pyrene (Py), i.e., 2-n-alkyl-pyrenes (Py-C4 and Py-C8), in order to probe different regions inside the hydrophobic tail of n-dodecyl ß-d-maltoside (ßMal-C12) in two different phases (cubic ↔ lamellar). Although the sensitivity to the local environment is reduced compared to that of Py, attaching C4 and C8 at the 2-position of Py can provide a possible means to probe the local hydrophobicity in different parts of the tail region. The absence of excimer fluorescence and the ratio of the vibronic fluorescence peak intensities (I1/I3) in a lipid environment indicate the existence of Py as monomers in the hydrophobic region, similar to hydrophobic solvation, yet close to the headgroup region. When Py is replaced by Py-C4 and Py-C8, there is a small increase in hydrophobicity (reduction in I1/I3) as the Py moiety is pulled deeper inside the tail region of both cubic and lamellar phases. The larger space of the tail region in the lamellar phase is reflected as more local hydrophobicity measured by the probes which can penetrate deep inside, whereas the curved structure of the cubic phase limits the available space for the probes. Three fluorescence lifetime components were measured in lipid, indicating the heterogeneous nature of the hydrophobic region. In the lamellar phase, a large reduction in the average lifetime value, led by the long decay component, was measured for Py-C4 (reduction by 25%) and Py-C8 (45%) compared to that of the parent Py. This observation suggests the presence of a mechanism of interaction more collisional than static between the Py moiety and the tail region of the bilayer unit due to the ample space provided by the lamellar phase as the probe is buried deeper inside the hydrophobic region. A much smaller effect was observed in the cubic phase and was correlated with the tight environment around the probes, which stems from the increased curvature of the cubic phase. The current results provide a deeper understanding of the hydrophobic region during phase transition of lipid self-assembly which is important for better control during the process of membrane-protein crystallization.

12.
Int J Biol Macromol ; 114: 950-960, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29596937

RESUMEN

One of the most important purposes of enzyme engineering is to increase the thermal and kinetic stability of enzymes, which is an important factor for using enzymes in industry. The purpose of the present study is to achieve a higher thermal stability of α-chymotrypsin (α-Chy) by modification of the solvent environment. The influence of sucrose was investigated using thermal denaturation analysis, fluorescence spectroscopy, circular dichroism, molecular docking and molecular dynamics (MD) simulations. The results point to the effect of sucrose in enhancing the α-Chy stability. Fluorescence spectroscopy revealed one binding site that is dominated by static quenching. Molecular docking and MD simulation results indicate that hydrogen bonding and van der Waals forces play a major role in stabilizing the complex. Tm of this complex was enhanced due to the higher H-bond formation and the lower surface hydrophobicity after sucrose modification. The results show the ability of sucrose in protecting the native structural conformation of α-Chy. Sucrose was preferentially excluded from the surface of α-Chy which is explained by the higher tendency of water toward favorable interactions with the functional groups of α-Chy than with sucrose.


Asunto(s)
Quimotripsina/química , Simulación del Acoplamiento Molecular , Sacarosa/química , Estabilidad de Enzimas , Interacciones Hidrofóbicas e Hidrofílicas , Desnaturalización Proteica
13.
Artículo en Inglés | MEDLINE | ID: mdl-29316482

RESUMEN

The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27Å, which was closely reproduced by the docking analysis (29Å) and MD simulation (32Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Moleculares , Pirenos/química , Pirenos/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos
14.
RSC Adv ; 8(14): 7523-7532, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35539131

RESUMEN

Protein-conjugated gold nanoparticles (AuNPs) have recently shown promising applications in medicine, owing to their inertness and biocompatibility. Herein, we studied the spectroscopy of 25 nm diameter AuNPs, coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs indicates a single layer of protein coverage. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed an increase in the HSA-FL binding by ∼4.5 times when HSA is anchored on the nanoparticle surface, indicating a rise in the loading capacity. Femtosecond transient absorption measurements of the surface plasmonic resonance band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process. The three decay components were assigned to the electron-electron (∼400 fs), electron-phonon (∼2.0 ps) and phonon-phonon (200-250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Chemical unfolding of the warfarin binding site with guanidine hydrochloride (GdnHCl) was studied by measuring the spectral shift in the Trp214 fluorescence and the appearance of the Tyr fluorescence. Unfolding was shown to start at [GdnHCl] ≥ 2.0 M and is complete at [GdnHCl] = 6.0 M. HSA anchored onto the nanoparticle surface shows more resistance to the unfolding effect which is attributed to the stability of the native form of HSA on the nanoparticle surface. On the other hand, upon complete unfolding, a larger red shift in the Trp214 fluorescence was observed for the HSA-AuNP complex. This observation indicates that, upon unfolding, the HSA molecule is still anchored on the AuNP surface in which subdomain IIA is facing the outer water molecules in the bulk solution as well as the hydration shell rather than the core of the nanoparticle. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles, which is expected to help in optimizing their properties for critical applications in nanomedicine.

15.
J Phys Chem Lett ; 8(22): 5603-5608, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29094952

RESUMEN

Fluorescence upconversion and transient absorption techniques are used to explain the source of the intense red/near-infrared emission of crystalline 4-dimethylamino-2'-hydroxychalcone. We found that the initially excited enol form undergoes tautomerization in 3 ps to form the keto tautomer. The latter is stable in the ground state as a consequence of J-type aggregation in the crystal packing and is manifested in an absorption peak at 550 nm that spectrally overlaps with the short-lived enol emission, leading to self-reabsorption and adding a factor to the complete depletion of the enol emission. Relaxation of the keto tautomer takes place in the form of intense fluorescence (600-750 nm) with 1.7 ns lifetime. The different spectroscopy in solution is due to vibrational cooling (300 fs), followed by solvation dynamics (5 ps in methanol) and twisting of the hydroxyphenyl ring (16 ps), before relaxation of the enol tautomer in the form of weak green fluorescence with 350 ps lifetime.

16.
Phys Chem Chem Phys ; 19(15): 10099-10115, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28367545

RESUMEN

Ligand binding studies on human serum albumin (HSA) are crucial in determining the pharmacological properties of drug candidates. Here, two representatives of coumarin-chalcone hybrids were selected and their binding mechanism was identified via thermodynamics techniques, curve resolution analysis and computational methods at molecular levels. The binding parameters were derived using spectroscopic approaches and the results point to only one pocket located near the Trp214 residue in subdomain IIA of HSA. The protein tertiary structure was altered during ligand binding and formed an intermediate structure to create stronger ligand binding interactions. The best binding mode of the ligand was initially estimated by docking on an ensemble of HSA crystallographic structures and by molecular dynamics (MD) simulations. Per residue interaction energies were calculated over the MD trajectories as well. Reasonable agreement was found between experimental and theoretical results about the nature of binding, which was dominated by hydrogen bonding and van der Waals contributions.


Asunto(s)
Cumarinas/metabolismo , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Calorimetría , Chalcona/química , Dicroismo Circular , Cumarinas/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia , Electricidad Estática , Termodinámica
17.
Phys Chem Chem Phys ; 19(2): 1395-1407, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27976767

RESUMEN

In the present investigation, gold-silver@titania (Au-Ag@TiO2) plasmonic nanocomposite materials with different Au and Ag compositions were prepared using a simple one-step chemical reduction method and used as photoanodes in high-efficiency dye-sensitized solar cells (DSSCs). The Au-Ag incorporated TiO2 photoanode demonstrated an enhanced solar-to-electrical energy conversion efficiency of 7.33%, which is ∼230% higher than the unmodified TiO2 photoanode (2.22%) under full sunlight illumination (100 mW cm-2, AM 1.5G). This superior solar energy conversion efficiency was mainly due to the synergistic effect between the Au and Ag, and their surface plasmon resonance effect, which improved the optical absorption and interfacial charge transfer by minimizing the charge recombination process. The influence of the Au-Ag composition on the overall energy conversion efficiency was also explored, and the optimized composition with TiO2 was found to be Au75-Ag25. This was reflected in the femtosecond transient absorption dynamics in which the electron-phonon interaction in the Au nanoparticles was measured to be 6.14 ps in TiO2/Au75:Ag25, compared to 2.38 ps for free Au and 4.02 ps for TiO2/Au100:Ag0. The slower dynamics indicates a more efficient electron-hole separation in TiO2/Au75:Ag25 that is attributed to the formation of a Schottky barrier at the interface between TiO2 and the noble metal(s) that acts as an electron sink. The significant boost in the solar energy conversion efficiency with the Au-Ag@TiO2 plasmonic nanocomposite showed its potential as a photoanode for high-efficiency DSSCs.

18.
Sci Rep ; 6: 31749, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27526944

RESUMEN

Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Bacterias Grampositivas/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Bacteriocinas/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Bacterias Grampositivas/ultraestructura , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/ultraestructura , Microscopía Electrónica de Transmisión , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/ultraestructura
19.
Luminescence ; 31(3): 614-25, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26910188

RESUMEN

Fluorescence techniques have drawn increasing attention because they provide crucial information about molecular interactions in protein-ligand systems beyond that obtained by other methods. The advantage of fluorescence spectroscopy stems from the fact that the majority of molecules in biological systems do not exhibit fluorescence, making fluorescent probes useful with high sensitivity. Also, the fluorescence emission is highly sensitive to the local environment, providing a valuable tool to investigate the nature of binding sites in macromolecules. In this review, we discuss some of the important applications of a class of molecules that have been used as fluorescent probes in a variety of studies. Hydroxyphenyl benzazoles (HBXs) show distinct spectroscopic features that make them suitable probes for the study of certain biological mechanisms in DNA, protein and lipid. In particular, the complex photophysics of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and the distinguished fluorescence signatures of its different tautomeric forms make this molecule a useful probe in several applications. Among these are probing the DNA local environment, study of the flexibility and specificity of protein-binding sites, and detecting the heterogeneity and ionization ability of the head groups of different lipidic phases. The spectroscopy of HBX molecules and some of their chemically modified structures is also reviewed.


Asunto(s)
Azoles/química , ADN/química , Colorantes Fluorescentes/química , Lípidos/química , Procesos Fotoquímicos , Proteínas/química , Colorantes Fluorescentes/análisis , Estructura Molecular
20.
Carbohydr Res ; 415: 12-6, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26267888

RESUMEN

The reaction of 3-methyseleno-2-methylselenomethyl-propene with benzyl 2,3-anhydro-4-O-triflyl-ß-L-ribopyranoside provides a major convenient enantiomeric product of 1-methylene-(benzyl3,4-dideoxy-α-D-arabinopyranoso)-[3,4-c]-cyclopentane, with benzyl-2,3-anhydro-4-deoxy-4-C-(2-methyl- propen-3-yl)-α-D-lyxopyranoside as a minor product. While the reaction of 3-methyseleno-2-[methylselenomethyl]-propene with benzyl 2,3-anhydro-4-O-triflyl-α-D-ribopyranoside produces a good yield of benzyl-2,3-anhydro-4-deoxy-4-C-(2-methylpropen-3-yl)-α-D-lyxo-pyranoside. Molecular modeling and molecular dynamics simulations indicate that the intermediate in the reaction of the ß-L sugar frequently occupies an optimal conformation that leads to the formation of cyclopentane, while the intermediate in the reaction of the α-D sugar has a very small probability. The results point to the dominant role of the ß-L sugar intermediate in controlling the cyclopentane formation.


Asunto(s)
Ciclopentanos/síntesis química , Modelos Moleculares , Compuestos de Organoselenio/síntesis química , Carbono/química , Compuestos de Organoselenio/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...